Dialysis Dose Prescription and Delivery

William Clark, M.D.
Claudio Ronco, M.D.
Rolando Claure-Del Granado, M.D.
CRRT Conference
February 15, 2012
Dose in RRT: Key concepts

- Dose definition
- Quantifying dose
- Prescribed *versus* delivered
- Factors influencing clearance
- Practical Considerations
Dose in RRT: Key concepts

- Dose definition
 - Quantifying dose
 - Prescribed versus delivered
 - Factors influencing clearance
 - Practical Considerations
What defines dose?

A measure of the quantity of blood purification achieved by means of extracorporeal techniques.

A **measure** of the **quantity** of a **representative marker solute** which is removed from a patient.
What defines dose?

• Major flaws in the previous concept:
 – The marker solute cannot and does not represent all the solutes that accumulate in AKI.
 – Its kinetics and volume of distribution are also different from those of the solutes of interest.
 – Its removal during RRT is not representative of the removal of other solutes.
What Defines Dose?

“The representative marker”

<table>
<thead>
<tr>
<th>Biochemical parameters</th>
<th>Clinical Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Small-solute (Urea)</td>
<td>• Fluid balance</td>
</tr>
<tr>
<td>• Correction of electrolyte disturbances</td>
<td>• Cardiovascular stability (↓ vasopressor, MAP, etc.)</td>
</tr>
<tr>
<td>• Adequate clearance of larger middle-molecules (β2-microglobulin)</td>
<td>• Improvement in respiratory function</td>
</tr>
<tr>
<td>• nPCR</td>
<td>• Nutritional needs</td>
</tr>
<tr>
<td>• pH, HCO3, AG, SIG</td>
<td></td>
</tr>
</tbody>
</table>
Dialysis dose in acute kidney injury and chronic dialysis

*Andrew Davenport, Ken Farrington
Centre for Nephrology, University College London Medical School, Royal Free Campus, London NW3 2PF, UK (AD); and Renal Unit, Lister Hospital, Stevenage, Hertfordshire, UK (KF)

Davenport and Farrington Lancet; 2010
618 patients enrolled in a prospective multicenter observational study (PICARD).

Fluid overload was defined as more than a 10% increase in body weight relative to baseline.

\[
(\sum_{\text{daily}} (\text{fluid intake (L)} - \text{total output (L)})/\text{body weight (in kilograms)}) \times 100.
\]

Dialyzed patients, survivors had significantly lower fluid accumulation when dialysis was initiated compared to non-survivors after adjustments for dialysis modality and severity score.

Non-dialyzed patients, survivors had significantly less fluid accumulation after the peak of their serum creatinine.

Bouchard et al. Kidney Int; 2009
Prospective observational study. 297 children from 13 centers across the United States.

Fluid overload from ICU admission to CRRT initiation, defined as a % equal to (fluid in [L] – fluid out [L])/(ICU admit weight [kg]) x 100%.

Patients who developed 20% fluid overload at CRRT initiation had significantly higher mortality. Adjusted mortality OR was 1.03 (95% CI, 1.01-1.05)

Sutherland et al. AJKD; 2010
Dose in RRT: Key concepts

- Dose definition
- Quantifying dose
- Prescribed versus delivered
- Factors influencing clearance
- Practical Considerations
Quantifying delivered dose: Efficiency, Intensity, Efficacy

- **Efficiency**: clearance (K); volume of blood cleared of a given solute over a given time.

- **Intensity**: clearance × time (Kt); Kt × frequency (Kt × treatment days per week)

- **Efficacy**: represents effective solute removal
 - Fractional clearance of a given solute
 - Kt/V
Clinical trials evaluating dialysis dose in AKI during the last decade

<table>
<thead>
<tr>
<th>Reference</th>
<th>Dialysis Modality</th>
<th>Assessment of Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ronco et al 2000</td>
<td>Post-dilution CVVH</td>
<td>Ultrafiltration volume (mL/kg/h)</td>
</tr>
<tr>
<td>Schiff et al 2002</td>
<td>IHD</td>
<td>Frequency (3 per wk v.s. daily)</td>
</tr>
<tr>
<td>Bouman et al 2002</td>
<td>CVVH</td>
<td>Ultrafiltration volume (mL/kg/h)</td>
</tr>
<tr>
<td>Saudan et al 2006</td>
<td>CVVH vs. pre-dilution CVVHDF</td>
<td>Ultrafiltration volume (mL/kg/h)</td>
</tr>
<tr>
<td>Tolwani et al 2008</td>
<td>Pre-dilution CVVDHF</td>
<td>Ultrafiltration volume (mL/kg/h)</td>
</tr>
<tr>
<td>Palevsky et al 2008</td>
<td>IHD, SLED & CRRT</td>
<td>Ultrafiltration volume (mL/kg/h) for CRRT and frequency of session & Kt/V for IHD and SLED</td>
</tr>
<tr>
<td>Faulhaber-Walter et al 2009</td>
<td>Extended dialysis</td>
<td>BUN levels</td>
</tr>
<tr>
<td>Vesconet al 2009</td>
<td>IHD, CVVH, CVVHD, CVVHDF, HVHF & couple plasma filtration and adsorption</td>
<td>Frequency of sessions per week for IHD and Ultrafiltration volume (mL/kg/h) for CRRT</td>
</tr>
<tr>
<td>Bellomo et al 2009</td>
<td>Post-dilution CVVHDF</td>
<td>Ultrafiltration volume (mL/kg/h)</td>
</tr>
</tbody>
</table>

Modified from Bouchard et al. AJKD; 2009.
Dose expression characteristics

• Any dose measurement must have the ability to be associated to:
 – Process of solute removal
 – Patient outcomes

• Measurement should also be simple to calculate without sacrificing accuracy

• Ideal measurement for RRT dose should be numerically comparable across all modalities and treatment schedules
Toward the Optimal Dose Metric in Continuous Renal Replacement Therapy.

Rolando Claure-Del Granado, MD; Etienne Macedo MD, PhD; Glenn M. Chertow, MD, MPH; Sharon Soroko; Jonathan Himmelfarb, MD; T. Alp Ikizler, MD; Emil P. Paganini, MD; and Ravindra L. Mehta, MD.

University of California San Diego; University of Sao Paulo, Brazil; Stanford University School of Medicine; Kidney Research Institute, University of Washington; Vanderbilt University Medical Center; Cleveland Clinic Foundation.

Data from 52 critically-ill patients with AKI requiring dialysis.

All patients were treated with pre-dilution CVVHDF and regional citrate anticoagulation. Delivered dose was calculated using blood-side and dialysis-side kinetics.

Filter function was assessed during the entire course of therapy by calculating BUN to dialysis fluid urea nitrogen (FUN) ratios q/12 hours.

EKR and K_D presented a decline in their values that was related to the decrease in filter function assessed by the FUN/BUN ratio.

Claure-Del Granado Int J Artif Organs; In press.
Dose in RRT: Key concepts

- Dose definition
- Quantifying dose
- Prescribed *versus* delivered
- Factors influencing clearance
- Practical Considerations
Prescribed vs. Delivered

<table>
<thead>
<tr>
<th>Reference</th>
<th>Dialysis Modality</th>
<th>Prescribed</th>
<th>Delivered</th>
<th>% of Delivered Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evanson et al. 1998</td>
<td>IHD</td>
<td>Kt/V 1.25±0.47</td>
<td>Kt/V 1.04±0.49</td>
<td>83.5%</td>
</tr>
<tr>
<td>Evanson et al. 1999</td>
<td>IHD</td>
<td>Kt/V 1.11±0.32</td>
<td>spKt/V 0.9±60.33</td>
<td>86.4 – 75.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eKt/V 0.8±40.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dpKt/V 0.84±0.30</td>
<td></td>
</tr>
<tr>
<td>Venkataraman et al. 2002</td>
<td>CRRT</td>
<td>24.5±6.7 mL/Kg/h</td>
<td>16.6±5.4 mL/Kg/h</td>
<td>68%</td>
</tr>
<tr>
<td>Tolwani et al. 2008</td>
<td>CRRT</td>
<td>Standard 20 mL/Kg/h</td>
<td>17 mL/Kg/h</td>
<td>85% 82%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High 35 mL/Kg/h</td>
<td>29 mL/Kg/h</td>
<td></td>
</tr>
<tr>
<td>Vesconi 2009 et al.</td>
<td>CRRT</td>
<td>34.3 mL/Kg/h</td>
<td>27.1 mL/Kg/h</td>
<td>79%</td>
</tr>
</tbody>
</table>
Survey of 26 questions

7 questions for IHD and SLED that included:
- target dosage of therapy
- whether and how frequently delivered dose was assessed

9 questions for CRRT
- characterized dose mL/h vs. mL/kg/h
- no target dosage or assessment of delivered dose was evaluated

Only 21% of practitioners assessed delivered dialysis dose (IHD).
< 20% of practitioners reported using weight-based dosing of CRRT.

Absence of a consistent standard for prescription and monitoring of RRT during AKI.
Data from 52 critically ill patients, AKI requiring dialysis (Pre-dilution CVVHDF)

Regional citrate anticoagulation.

Filter efficacy was assessed by calculating FUN/BUN ratios q12 hr.

Prescribed urea clearance (K, ml/min)
- Effluent volume rate = Qd (ml/min) + Qr (ml/min) + Qnet (ml/min)

K Estimated = Effluent volume adjusted for effective time of treatment.

K delivered = FUN (mg/dl)/BUN (mg/dl)] x effluent volume rate (ml/min)
Reasons for Discontinuing CRRT and Filter efficacy

<table>
<thead>
<tr>
<th>Reasons</th>
<th>Number of Filters</th>
<th>Percentage (%)</th>
<th>FUN/BUN Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors affecting treatment time without affecting filter function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C for surgical procedures</td>
<td>10</td>
<td>6.3</td>
<td>0.93 (0.92 to 0.99)</td>
</tr>
<tr>
<td>D/C for medical procedures</td>
<td>9</td>
<td>5.7</td>
<td>1.0 (0.95 to 1)</td>
</tr>
<tr>
<td>routine filter changes</td>
<td>16</td>
<td>10.1</td>
<td>0.95 (0.84 to 1.0)</td>
</tr>
<tr>
<td>machine problems</td>
<td>8</td>
<td>5.0</td>
<td>0.97 (0.85 to 1.0)</td>
</tr>
<tr>
<td>transition to IHD</td>
<td>17</td>
<td>10.7</td>
<td>0.96 (0.82 to 0.97)</td>
</tr>
<tr>
<td>venous access clot</td>
<td>6</td>
<td>3.8</td>
<td>0.97 (0.96 to 0.98)</td>
</tr>
<tr>
<td>physician decision</td>
<td>10</td>
<td>6.3</td>
<td>0.98 (0.94 to 1)</td>
</tr>
<tr>
<td>patient or family decision</td>
<td>11</td>
<td>6.9</td>
<td>0.96 (0.94 to 1)</td>
</tr>
<tr>
<td>patient recovery</td>
<td>6</td>
<td>3.8</td>
<td>0.95 (0.92 to 0.99)</td>
</tr>
<tr>
<td>death</td>
<td>3</td>
<td>1.9</td>
<td>0.98 (0.87 to 1.0)</td>
</tr>
<tr>
<td>access change</td>
<td>9</td>
<td>5.7</td>
<td>0.9 (0.87 to 0.95)</td>
</tr>
<tr>
<td>Factors affecting filter function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter clotted</td>
<td>41</td>
<td>25.8</td>
<td>0.89 (0.83 to 0.94)</td>
</tr>
<tr>
<td>filter leak</td>
<td>1</td>
<td>0.63</td>
<td>0.745</td>
</tr>
<tr>
<td>low-sieving concentration polarization</td>
<td>12</td>
<td>7.5</td>
<td>0.86 (0.79 to 1.0)</td>
</tr>
</tbody>
</table>

Claure-Del Granado et al. CJASN, 2011
Solute clearance in CRRT: prescribed dose versus actual delivered dose

William D. Lyndon¹, Keith M. Wille² and Ashita J. Tolwani¹
Dose in RRT: Key concepts

- Dose definition
- Quantifying dose
- Prescribed versus delivered
- Factors influencing clearance
- Practical Considerations
Factors Influencing RRT Clearances in the ICU

- Patient factors
- Treatment factors
Patient Related Factors

- Generation of uremic toxins (G)
- Pool of uremic toxins (V)
Patient Related Factors

• Generation of uremic toxins (G)
 – Higher in general than for ESRD (nPCR often > 1.5 g/kg/day)
 – Variable

• Pool of uremic toxins (V)
Patient Related Factors

- Generation of uremic toxins \((G) \)
- Pool of uremic toxins \((V) \)
 - \(V \) is higher in AKI compared to ESRD patients, often >0.65L/kg
 - \(V \) does not equate to TBW in AKI as assessed BIA
 - \(V \) is greater than anthropometrically calculated values

Himmelfarb et al. Kidney Int; 2002
Patient Related Factors

- Generation of uremic toxins (G)

- Pool of uremic toxins (V)
 - Increased from Na^+/H_2O overload combined with loss of lean body mass during ARF and critical illness
 - Increased by a 20% H_2O redistribution from intracellular to extracellular space in critical illness – *cellular dehydration*
 - V is a *virtual* rather than literal anatomical parameter in critical illness

Treatment Related Factors

- Catheter
- Filter
- Time out of therapy
Treatment Related Factors

- Catheter
- Filter
- Time out of therapy
Pre-dilution CVVHDF
Filter 0.9 m\(^2\) AN69
Anticoagulation LMW Heparin
Filter change each 72 hrs. or if clotted

Randomized
-15 patients (46 treatments) PNT catheter
-15 patients (46 treatments) ST catheter

Prescribed and delivered clearance was assessed

No difference in Qb

No difference in recirculation rate

ST catheters less catheter related

Klouche K et al. Am J Kidney Dis, 2007
Treatment Related Factors

- Catheter
- Filter
- Time out of therapy
Assessing and Delivering Dialysis Dose in Acute Kidney Injury

Rolando Claure-Del Granado and Ravindra L. Mehta
Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California

\[K = Q_{eff} \times S \]

Small solutes (Urea)
Plasma protein
Clotting

Claure-Del Granado R and Mehta RL. Sem Dialysis; 2011
Effect of type of anticoagulation on filter life and delivered dose

<table>
<thead>
<tr>
<th>Type of anticoagulant</th>
<th>Median (IQR) Filter Life in Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate</td>
<td>48 (20.3-75.0)</td>
</tr>
<tr>
<td>Heparin</td>
<td>15.9 (8.5 - 27.0)</td>
</tr>
<tr>
<td>No anticoagulant</td>
<td>17.5 (9.5 to 32)</td>
</tr>
<tr>
<td>(p) value</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>
Treatment Related Factors

- Catheter
- Filter
- Time out of therapy
The Impact of Down-Time and Filter Efficacy on Delivered Dose of Continuous Renal Replacement Therapy
Dose in CRRT: Practical considerations

- Clearances should be measured as part of routine care delivery as estimated clearances do not equate delivered.

- Optimizing RRT clearances requires constant assessment and adjustment for operational characteristics and treatment factors.

- Delivered Dose is less than Prescribed and consequently prescribed dose should compensate for the anticipated reduction (approximately 15-25%).

- Solute Clearances are not the sole measure of dialysis adequacy. Fluid removal and fluid balance are equally if not more important parameters to be monitored.
Proposed parameters for Dose Assessment

TABLE 2. Proposed parameters for delivered dose assessment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very small waste</td>
<td>K⁺, Na⁺, Phosphate H⁻</td>
<td>Blood levels of K, Na, PO₄</td>
</tr>
<tr>
<td>products</td>
<td></td>
<td>Phosphate clearance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH, HCO₃ AG, SIDeff,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIDapp, SIG, Delta gap,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delta ratio.</td>
</tr>
<tr>
<td>Small waste products</td>
<td>Urea</td>
<td>Clearance (ml/minutes)</td>
</tr>
<tr>
<td>Middle-sized</td>
<td>Serum β₂ Microglobulin</td>
<td>β₂ Microglobulin clearance</td>
</tr>
<tr>
<td>molecules</td>
<td>Weight (kg)</td>
<td></td>
</tr>
<tr>
<td>Fluid</td>
<td>Inputs–Outputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BNP</td>
<td></td>
</tr>
</tbody>
</table>