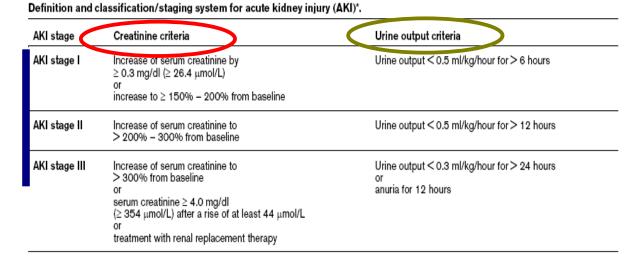

Pediatric CRRT The Basics

Geoffrey Fleming Scott Sutherland Jordan Symons Michael Zappitelli

17th International CRRT Conference San Diego 2012

Epidemiology Of and Indications For Pediatric CRRT

Pediatric AKI: Definition


Pediatric RIFLE (pRIFLE)

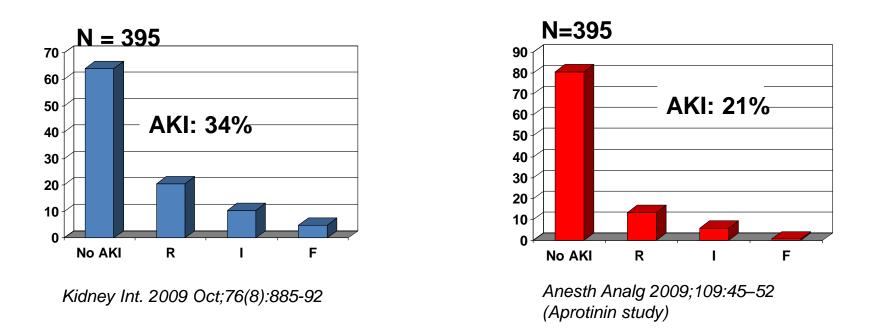
Ackan-Arikan et al, Kidney International, 2007

	Estimated CCI	Urine output
Risk	eCCI decrease by 25%	<0.5 ml/kg/h for 8 h
Injury	eCCI decrease by 50%	<0.5 ml/kg/h for 16 h
Failure	eCCI decrease by 75% or	<0.3 ml/kg/h for 24 h or
	eCCl <35 ml/min/1.73 m ²	anuric for 12 h
Loss	Persistent failure > 4 weeks	
End	End-stage renal disease	
stage	(persistent failure >3	
-	months)	

eCCI, estimated creatinine clearance; pRIFLE, pediatric risk, injury, failure, loss and end-stage renal disease.

Table 1

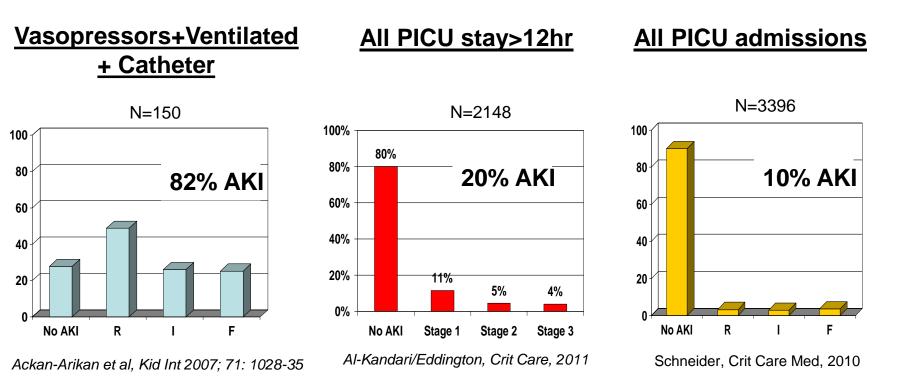
Diagnostic criteria for AKI includes an abrupt (within 48 hours) reduction in kidney function defined as an absolute increase in serum creatinine of either 0.3 mg/dl or more (\geq 26.4 µmol/L) or a percentage increase of 50% or more (1.5 fold from baseline) or a reduction in urine output. *according to Mehta and colleagues [3]


Acute Kidney Injury

Network

Mehta et al, Crit Care Med, 2007

Pediatric AKI: Incidence in PICU Population & Definition-dependent


· Cardiac Surgery

Renal replacement therapy: 1 to 10% - CRRT not very common

Pediatric AKI: Incidence in PICU Population & Definition-dependent

General PICU

Renal replacement therapy: 1 to 9% -- some receive CRRT

CRRT Diagnoses Mostly secondary renal disease

USA

Table 5. Principal diagnoses and survivala

Parameter	n	Survivors	% Survival
Sepsis	81	48	59
Bone marrow transplant	55	25	45
Cardiac disease/	41	21	51
Renal disease	32	27	84
Liver disease/ transplant	29	9	31
Malignancy (no tumor lysis syndrome)	29	14	48
Ischemia/shock	19	13	68
Inborn error of metabolism	15	11	73
Drug intoxication	13	13	100
Tumor lysis syndrome	12	10	83
Pulmonary disease/ transplant	11	5	45
Other	7	5	71

USA

Diagnosis	Admissions	Survivors (%)	Median % FO (range)
All diagnoses	76	42 (55.3%)	12.9 (0-66.4)
Primary renal	15	10 (66.7%)	4.6 (0-60.4)
Secondary renal disease	61	32 (52.5%)	16.7 (0-66.4)
Sepsis without underlying condition	9	6 (66.7%)	21.8 (4.2-41.2)
Oncology patients (including TLS)	17	13 (76.5%)	7. <mark>4 (0.2-64)</mark>
Oncology patients (not including TLS)	6	3 (50%)	21.5 (7.4-64)
TLS	11	10 (90.1%)	2.9 (0.2-10)
BMT recipient	12	2 (16.7%)	25.1 (8.5-65.6)
Cardiac	7	2 (28.5%)	28.2 (0-66.4)
Liver	5	2 (40%)	22.5 (5-34)
Other ^a	11	7 (63.6%)	12.9 (1-54.1)

 $P(\chi^2) < 0.001.$

Clin J Am Soc Nephrol 2: 732-738, 2007

Journal of Critical Care (2009) 24, 394-400

Other – Spain: Much more in cardiac patients. Santiago et al, Int Care Med, 2010

Severe AKI tends to occur EARLY in PICU admission

RRT Options

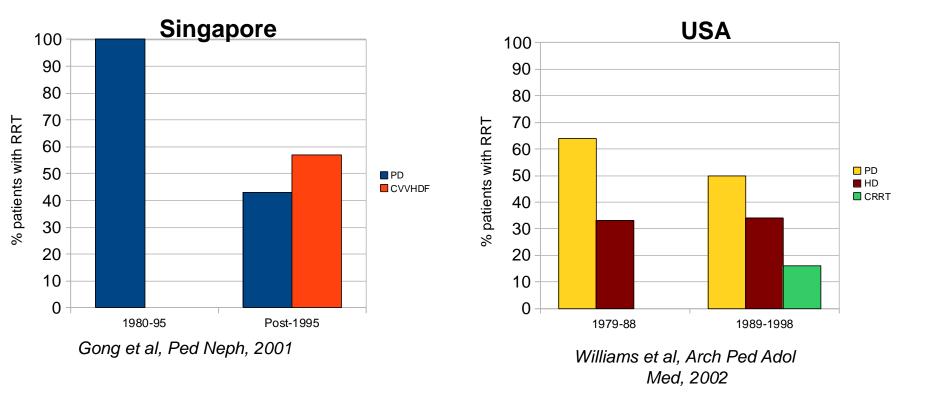
Hemodialysis, Peritoneal Dialysis, CRRT

- Patient Characteristics
 - Disease/Symptoms
 - Hemodynamic stability
- Goals of therapy
 - Fluid removal
 - Electrolyte correction
 - Both

•

Availability, expertise and cost

Pediatr Nephrol (2009) 24:37-48


Strazdins et al, Pediatr Nephrol, 2004

RRT Options

Modality	Advantages	Disadvantages
Acute Hemodialysis	Short treatment	Vascular access necessary
	Accurate UF	Hemodynamic instability
		Heparin
Peritoneal Dialysis	No vascular access	Less efficient
	Minimal equipment	Variable UF
	Minimal training	
	Feasible small infants	
	Continuous	
Continuous renal	Accurate UF, continuous alterations	Vascular access
replacement therapy	Smaller circuit volumes	
	Citrate anticoagulation	

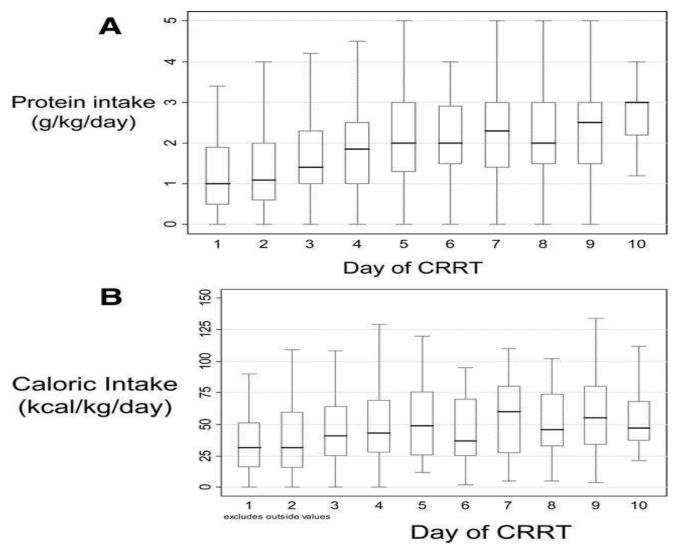
Trends in Pediatric RRT

- CRRT use may be increasing in North America (Warady & Bunchman, Pediatr Nephrol, 2000)
- European guidelines (Strazdins et al, Pediatr Nephrol, 2004)

Why CRRT?

Deals well with hemodynamic instability

- Precise Volume control/immediately adaptable
- Effective control of uremia, hypophosphatemia, hyperkalemia,


acid base balance

•

Management of sepsis/plasma cytokine filter

Allows for improved provision of nutritional support

NUTRITION

Zappitelli et all, Crit Care Med, 2008

Indications for Pediatric RRT

Electrolyte (metabolic) imbalance

Uremia with bleeding and or encephalopathy

Acuity/Degree of Kidney Injury

- reduction in GFR/elevated creatinine
- reduction in urine output

Nutritional support

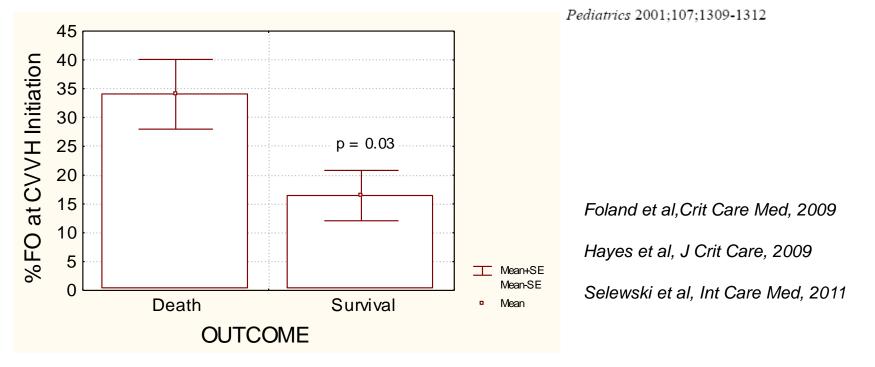
Intoxications, Inborn errors of Metabolism (IEM)

Indication	n	Survivors	% Survival
Fluid overload and electrolyte imbalance	157	80	51
Fluid overload only	100	61	61
Electrolyte imbalance only	44	30	68
Prevent fluid overload to allow intake	11	7	64
Other	32	23	72

Clin J Am Soc Nephrol 2: 732-738, 2007

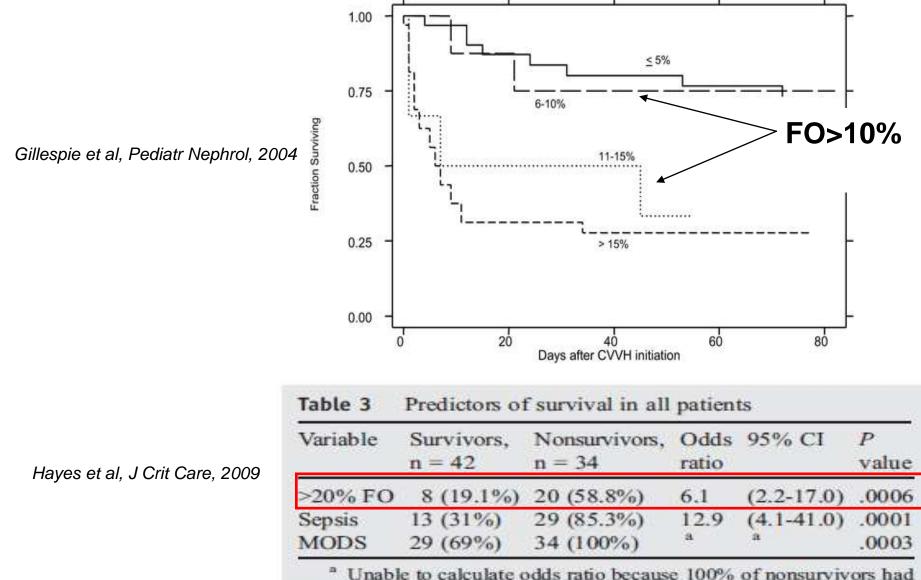
Table 4. Indications for CRRT and survivala

Fluid Overload


Fluid Overload

(Total fluid in - Total out)/ weight X 100 = FO %: Goldstein et al, Pediatrics

Change in weight: Selewski et al, Intens Care Med, 2011


Outcome in Children Receiving Continuous Venovenous Hemofiltration

Stuart L. Goldstein, MD*; Helen Currier, RN, CNN‡; Jeanine M. Graf, MD§; Carmen C. Cosio, MD§; Eileen D. Brewer, MD*; and Ramesh Sachdeva, MD§

MV analysis: FO – mortality association independent of illness severity

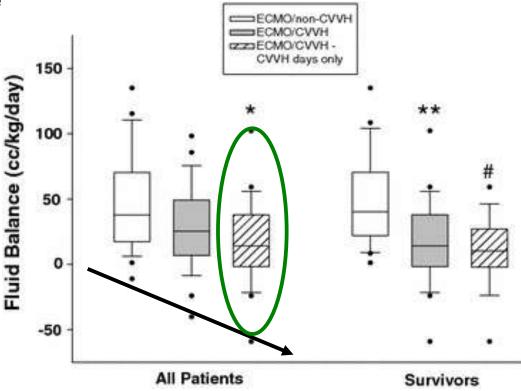

How much is too much?

^a Unable to calculate odds ratio because 100% of nonsurvivors had MODS.

Prospective Pediatric CRRT Registry

Critically ill children + CRRT: FO% predicts mortality

Figure 1. Mortality rates of pediatric intensive care unit patients receiving continuous renal replacement therapy subdivided by degree of fluid overload. Error bars represent 95% confidence intervals for the mortality rate in each fluid overload group. There was a statistically significant difference in mortality among the 3 groups. Patients with $\geq 20\%$ fluid overload had significantly higher mortality than patients with < 10% fluid overload and those with 10%-20% fluid overload. Patients with 10%-20% fluid overload had a trend toward increased mortality compared with patients with < 10% fluid overload; however, this trend did not reach statistical significance (P = 0.07).


Sutherland et al, AJKD, 2010

CRRT for FO

Pediatric Stem Cell Transplant with Acute Lung Injury

Within 24-48 hours of CRRT initiation:

- Better oxygenation (PaO2/FiO2)
- More negative fluid balance

Elbahlawan et al, Pediatr Blood Cancer, 2010

Hoover et al, Intens Care Med, 2008

Timing of Pediatric RRT ???????????????

Will depend on the patient, the individual physician and the place.

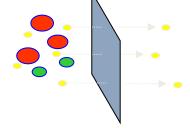
Considerations

Emerging importance of fluid overload prevention.

Children develop MODS and severe AKI early in ICU course

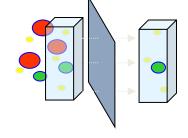
Children die with MODS very early in ICU course

Feasible in children


Summary: Pediatric CRRT Epidemiology and Indications

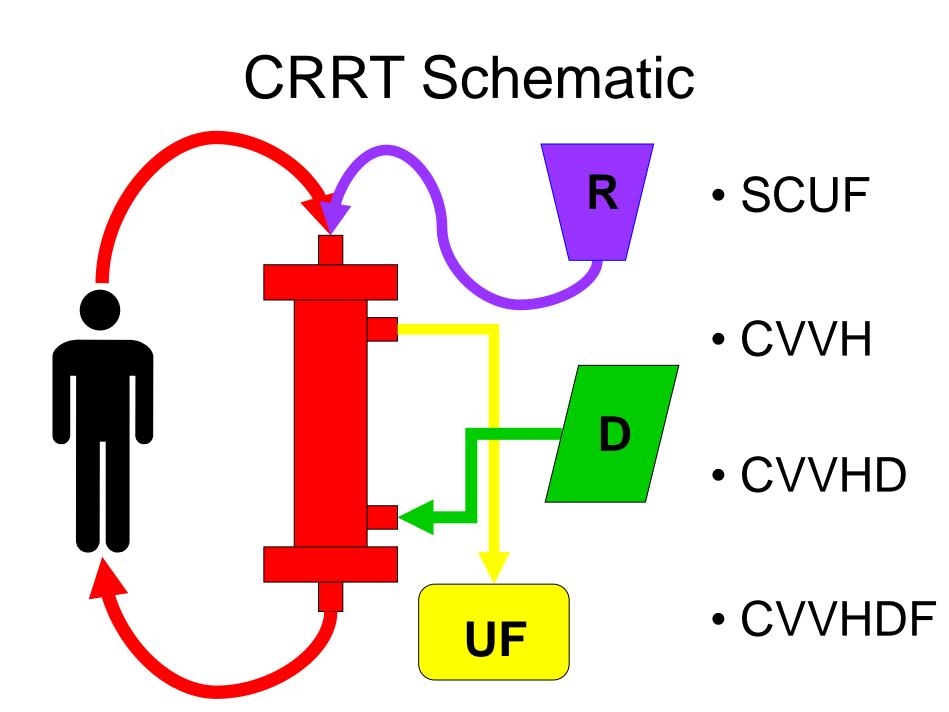
- Pediatric AKI may be more common than previously described
- · Primary renal disease giving way to MODS
- · CRRT for children continues to expand
 - Advantageous in critically ill child
 - Effective
 - Useful in setting of volume overload
 - Best time to start remains uncertain

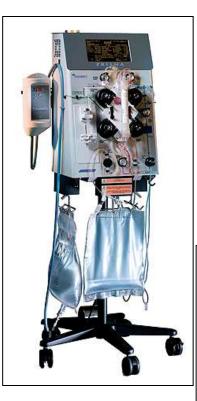
CRRT Terminology and Modalities


Diffusion vs. Convection

Diffusion is solute transport across a semi-permeable membrane - molecules move from an area of higher to an area of lower concentration

Small molecules diffuse more readily than large molecules


Convection is a process where solutes pass across the semi-permeable membrane along with the solvent in response to a positive transmembrane pressure


Small and large molecules convect equally well; limit is membrane cutoff

Current Nomenclature for CRRT

- SCUF: Slow Continuous Ultrafiltration
- CVVH: Continuous Veno-Venous Hemofiltration
- CVVHD: Continuous Veno-Venous Hemodialysis
- CVVHDF: Continuous Veno-Venous Hemodiafiltration

CRRT Machines

Prescribing Pediatric CRRT

Prescribing Pediatric CRRT

- Vascular access
- Hemofilter
- Prime
- Blood pump speed (Q_B)
- Anticoagulation
- Ultrafiltration rate
- Infused fluids
 - CVVH: Pre- and/or post-dilutional replacement
 - CVVHD: Counter-current dialysate
 - CVVHDF: Dialysate and replacement fluid

Hemofilter for CRRT

- Hemofilter size
 - Volume, porosity
- Membrane material

 Polysulfone, AN-69, PAES, etc.
- Tubing set integrated or separate?
- "Open" vs. "closed" systems do you have a choice?

Priming the Circuit for Pediatric CRRT

Blood

- Small patient, large extracorporeal volume

- Albumin
 - Hemodynamic instability
- Saline
 - Common default approach
- Self

– Volume loaded renal failure patient

Choosing Q_B for Pediatric CRRT

- Equation for blood flow rate (Q_B):
 - 3-5ml/kg/min
- Choose from a table:
 - 0-10 kg: 25-50ml/min
 - 11-20kg: 80-100ml/min
 - 21-50kg: 100-150ml/min
 - ->50kg: 150-180ml/min
- CRRT device may affect choices for Q_B

The real determinant – <u>the vascular access</u>

Ultrafiltration in Pediatric CRRT

- Choose UF rate to
 - balance input
 - remove excess fluid over time
 - "make room" for IV fluids and nutrition
 - provide solute clearance by convection
- SCUF, CVVHD, post-dilution CVVH: UF rate may be limited by blood flow (filtration fraction)
- Pre-dilution CVVH: High flow of pre-dilution fluid lessens hemoconcentration
- Remember to consider UF limits of the filter, especially in higher-volume hemofiltration

Ultrafiltration Rates

- No study has identified effective, safe UF rates in children
- For HEMODIALYSIS— NET UF rate of 0.2ml/kg/min is tolerated
 - This extrapolates to 1 ml/kg/ hr (NET UF) over 48 hr of continuous hemofiltration

Infused Fluids for Pediatric CRRT

- SCUF: No infused fluids
- CVVHD: Counter-current dialysate
- CVVH: Pre- and/or post-dilution replacement fluid
- CVVHDF: Dialysate and replacement fluids

Rate for Infused Fluid

- Higher rates increase clearance
- Lower rates may simplify electrolyte balance and limit protein loss
- Equations to help choose rate for fluid:
 - 20-60 ml/kg/hr
 - 2000-3000 ml/hr/1.73m2
- May need higher rates to balance citrate delivery

Characteristics of the Ideal CRRT Solution

- Physiological
- Reliable
- Inexpensive
- Easy to prepare

- Simple to store
- Quick to the bedside
- Widely available
- Fully compatible

Purpose of CRRT solutions

- Provide safe and consistent metabolic control
- To be adaptive to the choice of therapy-CVVH, CVVHD, CVVHDF

Options for CRRT Solutions

- Peritoneal dialysate: NO
- Pre-made IV solutions: MAYBE
 Saline, Lactated Ringers
- Custom-made solutions: RARELY

 Local pharmacy; outsource
- Commercially available CRRT solutions

Prevalence and Consequences of Errors in Solution Preparation

- 16/31 programs reported errors:
 - -7 errors in replacement solutions
 - -9 errors in dialysate solutions
- Consequences of improper solutions
 - -2 deaths
 - 1 non lethal cardiac arrest
 - 6 seizures (hypo/hypernatremia)
 - -7 without complications

Barletta JF et.al Pediatr Nephrol. 2006 Jun;21(6):842-5

What's the Difference Between Dialysate and Replacement Fluid?

Dialysate is a Device Replacement Fluid is a Drug

CRRT Solutions – Many Choices

Name	Company	R/D	Bag Size*	Flavors
Normocarb HF	DSI	R	3.24 L	2
Prismasate	Gambro	D	5 L	6
Accusol	Baxter	D	2.5 L	5
Prismasol	Gambro	R	5 L	7
Duosol	B Braun	D	5 L	6
PureFlow	NxStage	D	5	5

*after mixing

Summary: Prescribing Pediatric CRRT

- All modalities (SCUF, CVVH, CVVHD, CVVHDF) are available for treating critically ill children
- Newer solutions make CRRT safer for children as they do for adults
- Devices and equipment are adapted for kids
- Special consideration for flow rates, based on

Vascular access

Vascular Access and Anticoagulation for Pediatric CRRT

Why

- Access function is crucial for therapy
- Flows obtained will affect adequacy of blood flow for dose delivered and can affect filter-circuit life
- Downtime from clotted circuits-access is time off therapy

Access Considerations

- Low resistance
 - Resistance ~ 8l η /2r⁴
 - So, the biggest and shortest catheter should be best
- Vessel size
 - French ~ 3 x diameter of vessel
 - Beside ultrasound nearly universal
 - SVC is bigger than femoral vein

Access Considerations

- Internal Jugular
 - Very accessible
 - Large caliber (SVC)
 - Great flows
 - Low recirculation rate
 - Risk for Pneumothorax
 - Cardiac monitoring may take precedence.

- Femoral
 - Usually accessible
 - Smaller than SVC
 - Flows may be diminished by:
 - Abdominal Pressures
 - Patient movement
 - Risk for retroperitoneal hemorrhage
 - Higher recirculation rate

•Subclavian: Many feel current double lumen vas cath are too stiff to make the turn into the SVC and I don't personally use them. Although they are used in some centers.

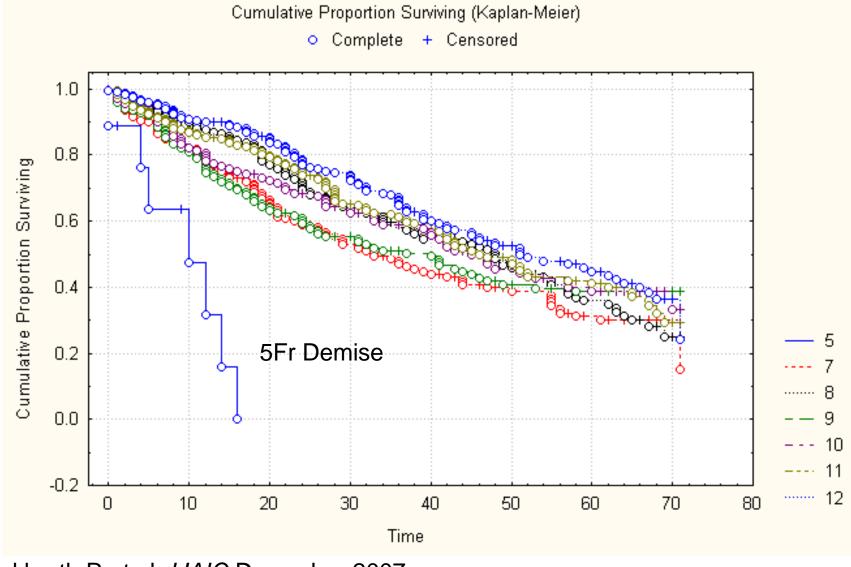
Detter for bigger kide likely

Cincinnati Children's Hospital Center for Acute Care Nephrology Acute Dialysis/CRRT/Pheresis Access Guideline

- Provide optimal access for acute dialysis/CRRT/Phere sis to maximize blood flow while minimizing vessel trauma
- Site Internal jugular vein preferred, femoral vein second option

Patient size	Catheter size	Special	
Neonates	7 French	Triple lumen is available for CaCl ₂ if providing citrate regional anticoagulation	
3-6 kg	7 French	Triple lumen is available for CaCl ₂ if providing citrate regional anticoagulation	
6-12 kg	8 French		
12-20 kg	9 French		
20-30 kg	10 French		
30+ kg	10 French or 11 French	Triple lumen 11.5 Fr should always be used for CaCl ₂ if providing citrate regional anticoagulation	

Artificial Kidney and Dialysis/Pediatrics

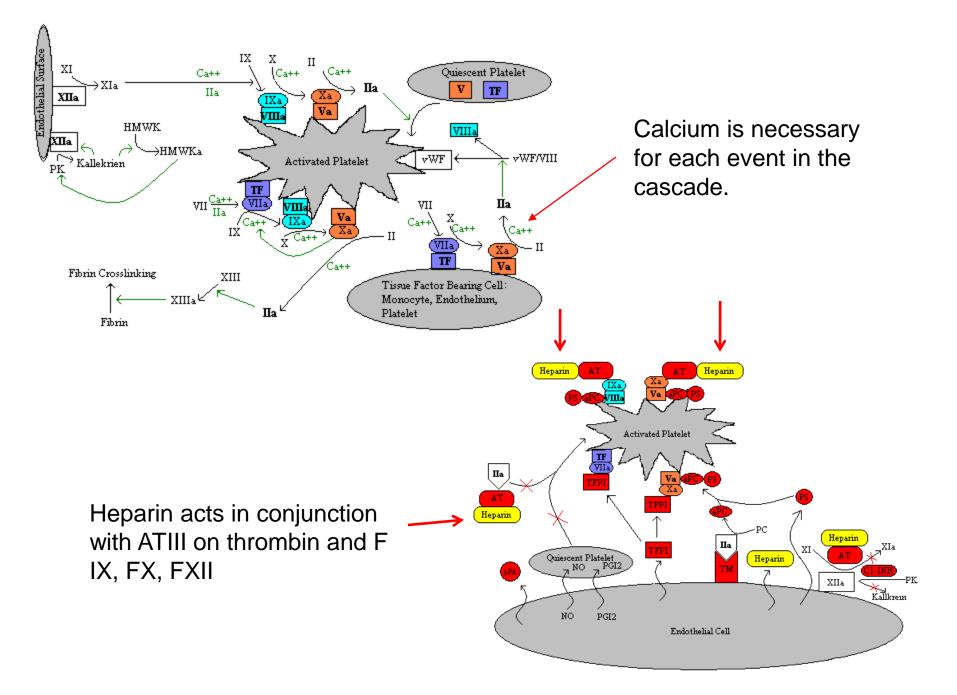

The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: A report from the PPCRRT registry

R. HACKBARTH¹, T. E. BUNCHMAN¹, A. N. CHUA², M. J. SOMERS³, M. A. BAUM³, J. M. SYMONS⁴, P. D. BROPHY⁵, D. BLOWEY⁶, J. D. FORTENBERRY⁷, D. CHAND⁸, F. X. FLORES⁹, S. R. ALEXANDER¹⁰, J. D. MAHAN¹¹, K. D. MCBRYDE¹², M. R. BENFIELD¹³, S. L. GOLDSTEIN²

- •376 Patients •Fen
- •1574 circuits

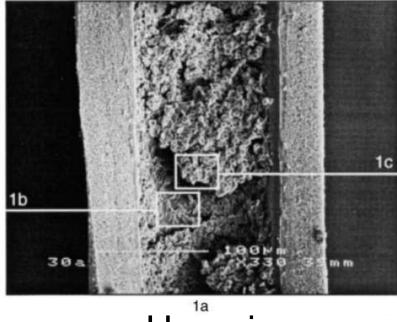
- •Femoral 69%
- •IJ 16%
- •Sub-Clavian 8%
- •Not Specified 7%

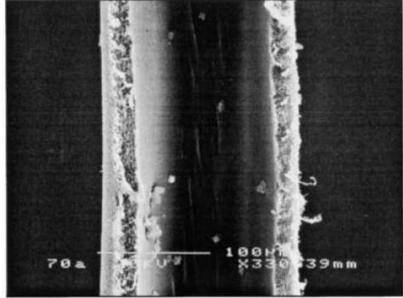
Circuit Survival Curves by French Size of Catheter


Hackbarth R et al: IJAIO December 2007

Summary: Vascular Access for Pediatric CRRT

- Put in the largest and shortest catheter when possible
 - Caveat: short femoral catheters have been shown to have high rate of recirc in adult patients. (Little et al. AJKD 2000;36:1135-9)
- The IJ site is preferable (over femoral) when clinical situation allows
- Avoid 5Fr Catheters


Anticoagulation


- Another crucial step in delivering the prescribed dose (reducing downtime)
- Critically ill patients are at risk for both increased and decreased clot formation simultaneously

What the filter looks like

Hofbauer R et al. Kid Int 1999;56:1578-83

ou

Heparin

Citrate

Electron microscopy of polysulfone hemodiafilter with two varieties of anticoagualtion during IHD. Granted, no monitoring of degree of anticoagulation was performed to assess adequacy of response.

Anticoagulation

- Systemic Heparin
 - Goal ACT 180-240 sec
 - Patient anticoagulated
 - Risk of bleeding
 - Risk for HIT

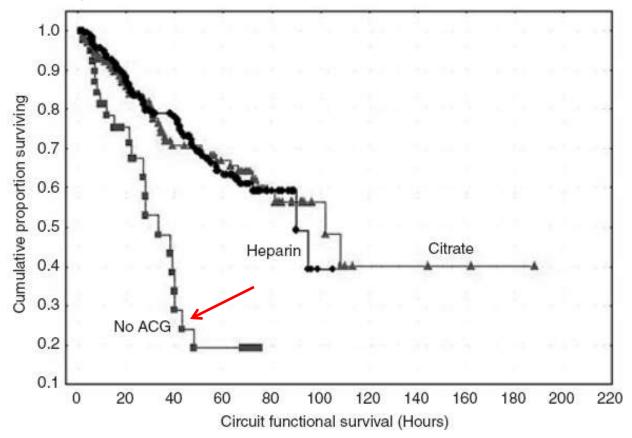
- Regional Citrate
 - Goal Circuit iCal 0.3 0.4mmol/L
 - Goal Patient iCal 1.11.4 mmol/L
 - Risk for
 - Hypocalcemia
 - Alkalosis
 - Hypernatremia

Nephrol Dial Transplant (2005) 20: 1416–1421 doi:10.1093/ndt/gfh817 Advance Access publication 26 April 2005

Original Article

Nephrology Dialysis Transplantation

Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT)


Patrick D. Brophy¹, Michael J. G. Somers², Michelle A. Baum², Jordan M. Symons³, Nancy McAfee³, James D. Fortenberry⁴, Kristine Rogers⁴, Joni Barnett⁵, Douglas Blowey⁶, Cheryl Baker⁷, Timothy E. Bunchman⁸ and Stuart L. Goldstein⁷

- •138 Patients in multicenter registry study
 - •442 Circuits

•Circuit survival time evaluated for three anticoagulation strategies

- •Heparin (52% of circuits)
- •Regional Citrate (36% of circuits)
- •No anticoagulation (12% of circuits)

Brophy PD et al. Nephrol Dial Transplant. 2005;20:1416-21

•Mean circuit survival (42 and 44 hr) were not different for Hep vs Citrate, but both longer than no anticoagulation (27 hr)

•At 60 hr, 69% of Hep and Citrate circuits were functional, but only 28% of the no-anticoagulation circuits

•In this analysis circuit survival was not affected by the access size

•Citrate group had no bleeding complications, 9 Heparin patients with bleeding

Citrate Specific Issues

- Alkalosis
 - 1 mmol Citrate to 3 mmol HCO3
 - Normocarb protocols may exacerbate (35 mEq/L)
- Hypernatremia
 - Tri-Sodium Citrate infusion
- Hypocalcemic Citrate Toxicity
 - Incomplete clearance of citrate, usually due to liver dysfunction
 - Rising total calcium, decreasing iCal

Summary: Anticoagulation for Pediatric CRRT

- Heparin or Citrate is better than no anticoagulation (even in liver failure, DIC, etc)
- Citrate has fewer bleeding complications
- Circuit survival means less downtime hence more delivered therapy
- Pick institutional strategy and learn to use it well
- Consider citrate as the method of choice

Demographics and Outcomes

Demographics

- Provision of CRRT to children requires care of a disparate population
- Prospective Pediatric CRRT Registry (ppCRRT)
 - 344 children from 13 US centers
 - Age range from newborn to 25 years of age
 - Weight range from 1.3kg to 160kg
 - Numerous underlying diseases states
 - Multiple organ systems affected

Symons JM, et. al. (2007) Demographic Characteristics of Pediatric Continuous Renal Replacement Therapy: A Report of the Prospective Pediatric Continuous Renal Replacement Therapy Registry. Clin J Am

Demographics Which children receive CRRT?

- Mostly critically ill children with AKI and fluid overload
- ppCRRT data
 - 2/3 of kids were receiving vasopressor support
 - 1/2 of patients were receiving diuretics
- Outcome highly dependent on underlying disease and severity of illness

Demographics Underlying Disease

ppCRRT Registry Cohort (n=344)			
Primary Diagnosis	Patients		
Sepsis	81	23.5%	
Stem Cell Transplant	55	16.0%	
Cardiac Disease/Transplant	41	11.9%	
Renal Disease	32	9.3%	
Liver Disease/Transplant	29	8.4%	
Malignancy (w/o tumor lysis)	29	8.4%	
Ischemia/shock	19	5.5%	
Inborn Error of Metabolism	15	4.4%	
Drug Intoxication	13	3.8%	
Tumor Lysis Syndrome	12	3.5%	
Pulmonary Disease/Transplant	11	3.2%	
Other	7	2.0%	

Isolated Renal Disease Uncommon

Majority have systemic disease

Most common diagnoses

- Sepsis (23.5%)
- Oncologic (27.9%)

Symons JM, et. al. (2007) Demographic Characteristics of Pediatric Continuous Renal Replacement Therapy: A Report of the Prospective Pediatric Continuous Renal Replacement Therapy Registry. Clin J Am

Outcomes General Survival Rates

Study	Age	Pt. #	Survival	Associated with Increased Mortality
Bunchman et. al. (2001)	6.2y	106	40%	Vasopressor use, non-renal diagnosis
Goldstein, et. al. (2001)	8.8y	22	43%	Greater FO
Gillespie (2004)	5.1y	77	50%	Greater FO
Foland et. al. (2004)	9.6y	113	61%	MODS, Greater FO
ppCRRT -Symons et. al. (2007) -Sutherland et. al. (2010)	8.5y	344	58%	Oncologic disease, MODS, Greater FO,
Hayes, et. al. (2009)	5.8y	76	55%	Sepsis, MODS, Greater FO

Survival rate has improved over time from 40-45% to 55-60%

Underlying disease, comorbidities, risk factors determine mortality

Outcomes Question 1

- Does underlying or primary disease matter?
 - Yes
 - No
- What diseases are associated with worse outcomes?

Outcomes Risk Factors

Variable	Odds Ratio (Mortality)	95% Confidence Interval	p-value
Fluid Overload Group			
≥20% FO vs. <10% FO	21.1	5.2 - 85.7	<0.001
≥20% FO vs. 10%-20% FO	11.2	1.8 - 68.4	0.009
10%-20% FO vs. <10% FO	1.9	0.33 - 10.8	0.48
Oncologic Diagnosis	5.8	2.5 - 13.9	< 0.001
Diagnosis of MODS	3.7	1.4 - 9.9	0.008
Sepsis Diagnosis	3.6	1.3 - 9.8	0.01
Convective CRRT Modality	0.49	0.28 - 0.86	0.01
PRISM II PICU Admission	1.04	1.0 - 1.1	0.07
IEM/Intoxication Diagnosis	3.4	0.75 - 15.2	0.11
Inotrope Number	1.2	0.9 - 1.6	0.17
CRRT Initiated to treat FO	1.5	0.66 - 3.4	0.34
Age at CRRT Initiation	1.01	0.97 - 1.05	0.63
Sex	0.96	0.55 - 1.7	0.88

Sutherland SM et. al. (2010) Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J

Outcomes Risk Factors: Oncologic Illness

- 51 patients in ppCRRT w/ stem cell transplant
- 45% survival
- Improved survival w/ convective modality (univariate analysis)

76% also had MODS Mean FO was over 12%

Flores FX, et. al. (2008) Continuous renal replacement therapy (CRRT) after stem cell transplantation. A report from the prospective pediatric CRRT Registry Group. Pediatr Nephrol Apr 23(4):625-30.

Outcomes Risk Factors: MODS

- Critically ill kids w/ multi-organ dysfunction syndrome from ppCRRT Registry
- n = 116
- Survival 51.7%
- Causes of AKI necessitating CRRT
 - Sepsis (39.2%)
 - Cardiogenic shock

(20%)

Fluid overload higher in non-survivors

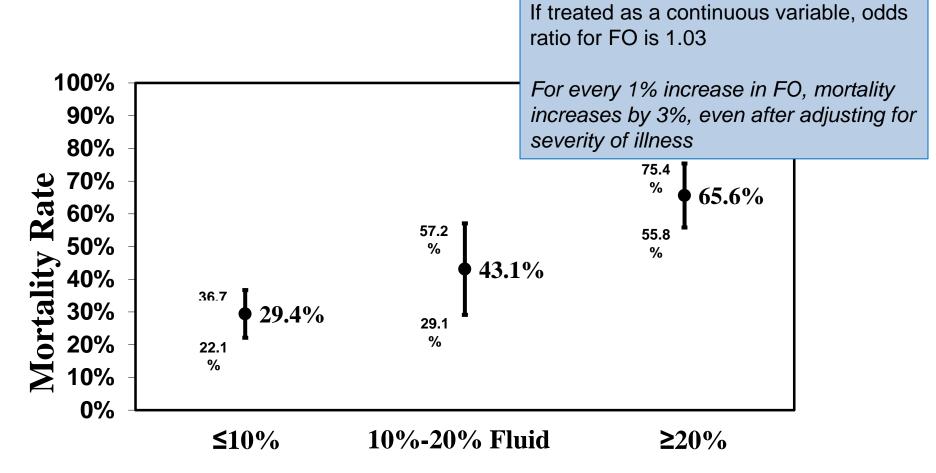
Goldstein SL, et. al. (2005) Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney International. 67:653-658.

Outcomes Underlying Disease

ppCRRT Registry Cohort (n=344)		
Primary Diagnosis	Survival	
Liver Disease/Transplant	31%	
Pulmonary Disease/Transplant	45%	
Stem Cell Transplant	45%	
Malignancy (w/o tumor lysis)	48%	
Cardiac Disease/Transplant	51%	
Sepsis	59%	
Ischemia/shock	68%	
Inborn Error of Metabolism	73%	
Renal Disease	84%	
Tumor Lysis Syndrome	83%	
Drug Intoxication	100%	
Other	71%	

Symons JM, et. al. (2007) Demographic Characteristics of Pediatric Continuous Renal Replacement Therapy: A Report of the Prospective Pediatric Continuous Renal Replacement Therapy Registry. Clin J Am

Outcomes Question 2


- Does fluid overload matter?
 - Yes
 - No

Outcomes Risk Factors

Variable	Odds Ratio (Mortality)	95% Confidence Interval	p-value
Fluid Overload Group			
$\geq 20\%$ FO vs. $< 10\%$ FO	21.1	5.2 - 85.7	<0.001
≥20% FO vs. 10%-20% FO	11.2	1.8 - 68.4	0.009
10%-20% FO vs. <10% FO	1.9	0.33 - 10.8	0.48
Oncologic Diagnosis	5.8	2.5 - 13.9	< 0.001
Diagnosis of MODS	3.7	1.4 - 9.9	0.008
Sepsis Diagnosis	3.6	1.3 - 9.8	0.01
Convective CRRT Modality	0.49	0.28 - 0.86	0.01
PRISM II PICU Admission	1.04	1.0 - 1.1	0.07
IEM/Intoxication Diagnosis	3.4	0.75 - 15.2	0.11
Inotrope Number	1.2	0.9 - 1.6	0.17
CRRT Initiated to treat FO	1.5	0.66 - 3.4	0.34
Age at CRRT Initiation	1.01	0.97 - 1.05	0.63
Sex	0.96	0.55 - 1.7	0.88

Sutherland SM et. al. (2010) Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J

Outcomes Risk Factors: Fluid Overload

Sutherland SM et. al. (2010) Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J

Outcomes Question 3

- Are long term outcomes good or bad?
 - Yes
 - No
 - Nobody Knows

Outcomes ECMO and CRRT

- Retrospective, single center analysis of ECMO data base
 - 154/378 patients received ECMO and CRRT
 - 68/154 survived to hospital discharge
 - 65/68 (96%) RECOVERED RENAL FUNCTION AND DID NOT REQUIRE RRT AT DISCHARGE
- 3/68 who required RRT at discharge all had primary renal disease

Paden , M., et al. (2010) Recovery of renal function and survival after continuous renal replacement therapy during extracorporeal membrane oxygenation. *Pediatric Critical Care Medicine. epub May* 6

Outcomes

Long term outcomes AKI #1

- Original study of 245 inpatients with AKI
- 174 kids survived to hospital discharge and had long term data available
 - Survival amongst these kids was ~ 80% (139/174)
 - Of these deaths, ~ 70% occurred in the first 12mo
- At 3-5 years post hospital discharge
 - Renal survival ~ 90%
 - WORSE in those with primary renal disease (69% vs. 96%)
 - 60% of patients (n=29) had either microalbuminuria, hyperfiltration, reduced GFR, or hypertension

Askenazi DJ, et al. (2006) 3-5 year longitudinal follow-up of pediatric patients after acute renal failure. *Kidney International. epub Jan 69(1):18417-9.*

Outcomes

Long term outcomes AKI #2

- 37 children with AKI (age 1mo to 10y)
- West Bengal and East India
 - AKI due to glomerulonephritis in 46%
 - AKI due to snakebite in 24%
 - AKI due to sepsis in 8%
- Survival 65%
- 1/3 of survivors with long term data had abnormal creatinine, hematuria, proteinuria, or hypertension
- Patients with AKI requiring CRRT are likely to be on the more severe end of the spectrum and likely have greater incidence of long term sequelae

Sinha R., et al. (2009) Ten-year follow-up of children after acute renal failure from a developing country. *Nephrol Dial Transplant.24:829-833-9.*

Outcomes Summary

- The majority of patients who receive CRRT are:

 Critically ill
 - Have multisystem illness (rather than primary renal disease)
 - Have fluid overload
- Outcome hinges on:
 - Underlying disease and cause of AKI
 - Severity of illness
 - Severity of fluid overload
 - Seems to not hinge on CRRT dose

Outcomes Summary

- Overall survival ranges from 45-60%
- Survivors can expect recovery of renal function and RRT independence
 - Unless cause of AKI is a primary renal disease
- Survivors are likely to have long-term sequelae and require long term follow up
 - Hypertension
 - Proteinuria
 - Chronic kidney disease