Effects of T-Cell Immune Modulator AB103 on Experimental Sepsis-induced Acute Kidney Injury

Xiaojian Wan, MD1,2; PhD; Xiaoyan Wen, MD,M.Sc1; Anat Shirvan, PhD3; Raymond Kaempfer, PhD4; Zhiyong Peng, MD, PhD1; John A. Kellum, MD, MCCM5

Center for Critical Care Nephrology, CRISMA, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA1; Department of Anesthesiology & Critical Care Medicine, Shanghai Hospital, Second Military Medical University, Shanghai, China2; Atox Bio Ltd, Ness Ziona, Israel3; Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel4

Conclusions

This study was supported by a grant from AtoxBio Ltd.

Background

- Sepsis is a systemic inflammatory response syndrome caused by severe infection. Sepsis-associated acute kidney injury (SA-AKI) is common and is associated with high morbidity and mortality. The underlying mechanisms are not completely understood.
- In response to pathogen-derived molecules, T cell activation plays a crucial role in the immediate immune response.
- CD28 is essential for T cell proliferation and survival, cytokine production, and T-helper type-II development.
- AB103 is a rationally designed short peptide acting as a CD28 co-stimulatory receptor antagonist regulating the host's inflammatory response, improving the host's ability to effectively fight the infection.

Objective

- We sought to understand the role of AB103 in sepsis-associated acute kidney injury.

Methods

- Sepsis was induced by Cecal Ligation and Puncture (CLP) in 22 male Balb/c mice of which 6 received sham surgery.
- Six hours after CLP, mice were randomized to receive either a single dose of intravenous AB103 (5 mg/kg) or vehicle, and survival was followed for 48 hrs. Kidney tissue and blood were collected from surviving animals at that time.
- Creatinine level and kidney histology were determined, assessing vacuolization of the tubular epithelium/perivascular cell and neutrophil gelatinase-associated lipocalin (NGAL) expression.

Results

- Figure 1. AB103 treatment significantly improves survival.
- Figure 2. AB103-treated septic animals exhibited an improvement in kidney function.
- Figure 3. AB103-treated septic animals displayed variable effects on kidney pathology.
- Figure 4. Circulating inflammatory cytokine concentrations had no significant correlation with kidney pathology.
- Figure 5. Diagram of CD28 Signaling in T-Helper Cell activation pathway.

Conclusions

- AB103 dramatically improved survival from Cecal Ligation and Puncture-induced sepsis in mice.
- AB103 significantly reduced serum creatinine and improved kidney function in this model of sepsis.
- Kidney injury assessed in survivors was not clearly improved by AB103, but given the low survival in control animals, it is not possible to draw a firm conclusion.