Comparison of Drug Dosing Equations for Continuous Renal Replacement Therapy (CRRT)

Susan J. Lewis, Anna Polso, John A. Lee, Farzad Daneshvar, Abbie Leino, Bruce A. Mueller
University of Michigan College of Pharmacy; Clinical, Social, and Administrative Sciences Department; Ann Arbor, Michigan

Background

- Continuous renal replacement therapy (CRRT) is a commonly used method for solute and fluid management in critically ill patients.
- Although many CRRT drug dosing guidelines have been published, none have been prospectively validated.
- Three different drug dosing equations have been published.
 - Equation A - Kroh

 \[D = D_n x (P_r + (Q_s x S_r)/CL_r) \]

 - Equation B - Bugge

 \[D = D_n x (1 - P_r) x C_{CL}(CL_{tot}) \]

 - Equation C - Reetze-Bonorden

 \[D = D_n x [1 - ((Q_s x S_r)/(Q_s + C_{CL}(CL_{tot})) \]

- A prospective literature search was conducted to obtain pharmacokinetic parameters for 10 commonly used antibiotics:
 - Acyclovir, cefepime, daptomycin, fluconazole, gentamicin, levofloxacin, linezolid, meropenem, piperacillin, and vancomycin

- A hypothetical 70 kg patient with Acute Kidney Injury on CRRT with an effluent rate of 25 ml/min (23.3 ml/kg/hr) based on the KDIGO CRRT effluent rate recommendations was modeled.

- The antibiotic doses were calculated using three different CRRT drug dosing equations (Kroh, Bugge, and Reetze-Bonorden) and standardized to mg/day to facilitate comparison.

- Doses were compared to Aronoff et al book which was used as the reference comparator.

- Descriptive statistics were used to compare the calculated doses.

Methods

- To compare the four literature-based CRRT dosing recommendations for 10 commonly used antibiotics.

Recommended Antibiotic Doses by Different Dosing Resources

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Aronoff (mg/d)</th>
<th>Bugge (mg/d)</th>
<th>Kroh (mg/d)</th>
<th>Reetze-Bonorden (mg/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir</td>
<td>525</td>
<td>260</td>
<td>117</td>
<td>592</td>
</tr>
<tr>
<td>Cefepime</td>
<td>4,000</td>
<td>2,363</td>
<td>2,150</td>
<td>378</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>280</td>
<td>242</td>
<td>328</td>
<td>386</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>400</td>
<td>225</td>
<td>640</td>
<td>386</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>120</td>
<td>94</td>
<td>113</td>
<td>98</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>250</td>
<td>370</td>
<td>319</td>
<td>328</td>
</tr>
<tr>
<td>Linezolid</td>
<td>1,200</td>
<td>770</td>
<td>797</td>
<td>1,526</td>
</tr>
<tr>
<td>Meropenem</td>
<td>3,000</td>
<td>1,477</td>
<td>1,227</td>
<td>1,899</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>12,000</td>
<td>6,882</td>
<td>5,370</td>
<td>11,181</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1,000</td>
<td>1,083</td>
<td>1,109</td>
<td>179</td>
</tr>
</tbody>
</table>

Results

- This study unveils a wide variability among antibiotic dosing recommendations from published CRRT dosing equations that can potentially lead to inappropriate pharmacotherapy.
- Limitations of the study include:
 - This study was not designed to show which method is best.
 - Dosing recommendation from Aronoff is based on an effluent rate of 33 ml/min.
 - Prospective evaluation of antibiotic dosing schemes with pharmacokinetic trials are needed.

Conclusions

- To compare the four literature-based CRRT dosing recommendations for 10 commonly used antibiotics.

References

Contact info: sjlewis@med.umich.edu
Abstract

This highlighted column can be used in place of the plain white columns that are on the first page of this poster template. Further changes to color scheme are not allowed.

This poster template measures 1.5' x 3'. It is designed to be enlarged 200% when printed to result in a poster that is 3' x 6'. Please ensure you specify this enlargement when providing the poster to the printer.

To view how the poster will look when printed, adjust the PowerPoint zoom to 200%.

Methods

Placeholder for text.

Subheading

Placeholder for text.