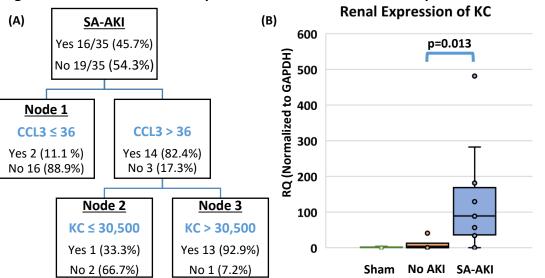
A predictive model for sepsisassociated acute kidney injury in mice

James D Odum, MD¹; Matthew N Alder, MD, PhD^{1,2}; Steve Standage, MD^{1,2}; Basilia Zingarelli, MD, PhD^{1,2}; Prasad Devarajan, MD^{2,3}; Hector R Wong, MD^{1,2}

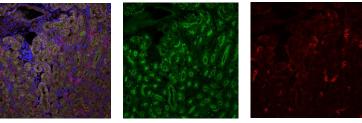
¹Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center ²Department of Pediatrics, University of Cincinnati College of Medicine ³Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center


Introduction

- Sepsis results in significant morbidity and mortality, and acute kidney injury is a frequent complication that portends worse outcomes
- Sepsis-associated acute kidney injury (SA-AKI) is caused by a complex interaction of perfusion abnormalities, oxidant stress, and inflammation
 - Significant heterogeneity exists and seemingly similar patients often develop different degrees of SA-AKI
- It remains unclear how the principal components of the sepsis inflammatory cascade contribute to the development of SA-AKI
 - We do not know if SA-AKI is triggered by the systemic production of inflammatory mediators that are filtered by the glomerulus or if SA-AKI is instigated by local tissue-level initiation of the inflammatory cascade in the kidney
- To address this knowledge gap, we interrogated the biological relevance of biomarkers currently used to predict outcomes in sepsis
 - The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) is clinically validated, provides insight into a patient's sepsis-related inflammatory response, and predicts mortality from sepsis (*Wong, Sci Transl Med, 2019*)
 - PERSEVERE biomarkers measured within 24 hours of septic shock have also recently been shown to reliably predict severe, persistent SA-AKI at day 3 of hospitalization in children (*Stanski, Am J Respir Crit Care Med, 2020*)
- We developed a murine model of SA-AKI and analyzed the murine homologs to the PERSEVERE biomarkers (mPERSEVERE)

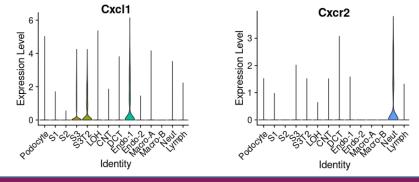
Methods and Materials

- Eight-week-old C57BL/6 male mice underwent cecal ligation and puncture to induce a polymicrobial, intraperitoneal form of sepsis
- mPERSEVERE biomarkers were collected via cheek bleed at 8-hours post-CLP and antibiotics were administered
 - Keratinocyte-derived chemokine (KC)
 - Macrophage inflammatory protein-1alpha (MIP-1α)
 - IL-6
 - Granzyme B (GZMB)
 - IL-1α
 - Macrophage inflammatory protein-1beta (MIP-1β)
 - Matrix metallopeptidase 8 (MMP8)
- At 24-hours, kidneys were harvested and serum creatinine was measured
- Classification and regression tree analysis (CART) was used to develop a predictive model based on 8-hour mPERSEVERE biomarkers using the binary outcome of 24-hour SA-AKI development (creatinine > 0.4 mg/dL) vs. No AKI
- Renal expression of biomarkers was determined using qPCR (normalized to GAPDH)
- Immunofluorescence was used to spatially localize KC expression
- Single cell RNA sequencing (scRNAseq) was performed on kidneys at 24-hours


Figure 1: CART derived SA-AKI prediction model and KC renal expression levels

Results

- KC and CCL3 at 8-hours were most predictive of SA-AKI development at 24hours (Fig 1A)
 - Sensitivity 81%, Specificity of 95%, and AUC of 0.90
 - Nodes 1 and 2 predict No AKI
 - Node 3 predicts SA-AKI
- Septic mice had significantly higher renal expression of KC (p=0.004) and CCL3 (p=0.002) compared to sham mice
- Mice with SA-AKI at 24-hours had increased in renal expression of KC compared to mice with No AKI (p=0.013) (Fig 1B)
- Immunofluorescence localized KC to proximal tubular epithelial cells via colocalization to LTL (Fig 2)
- scRNAseq demonstrated KC expression in the S3 and S3T2 proximal tubular segments as well as endothelial cells, whereas expression of its receptor, CXCR2, was only seen in neutrophils (Fig 3)


Figure 2: Immunofluorescence of septic mouse kidney at 24-hours post-CLP

Aggregate Proximal Tubular Immunofluorescence Cells (LTL)

Distal Tubular Cells (DBA) КС

Figure 3: scRNAseq localizes KC expression to S3/S3T2 proximal tubules

Discussion

This is the first predictive murine model that ties a host's sepsis-related inflammatory signature to later development of SA-AKI

- KC and CCL3 are chemokines associated with chemotaxis of innate immune cells, particularly neutrophils, but it is unclear if they are mechanistically tied to the underlying pathophysiology of SA-AKI
- KC is expressed and translated within kidney epithelial cells the S3/S3T2 proximal tubular segments as opposed to solely being secreted systemically
- Further investigation is needed to determine what initiates transcription of KC upstream and what role activating this chemotactic pathway plays in the development of renal injury.
- Strength: this study directly correlates to a clinical SA-AKI predictive model using PERSEVERE-II biomarkers in children (*Stanski, Am J Respir Crit Care Med 2020*)
- Limitations: polymicrobial nature of CLP and the singular time point of 24-

hours by which kidney tissue was analyzed.

Conclusions

- CCL3 + KC reliably estimates SA-AKI development in mice at 24-hours following CLP
- Both chemokines are expressed in whole kidney tissue
- KC demonstrated increased expression in mice that develop SA-AKI and localized to the proximal tubule cells by immunofluorescence and scRNAseq.

THE 27TH INTERNATIONAL CONFERENCE ON ADVANCES IN CRITICAL CARE NEPHROLOGY AKI & CRRRT 2022

MARCH 7-10, 2022 SAN DIEGO, CALIFORNIA