Bile-associated cast nephropathy and consequent tubular damage are relevant causes of acute kidney injury (AKI) during severe liver dysfunction. The mechanisms of bilirubin-associated AKI are mainly due to tubular cell apoptosis consequent to mitochondrial dysfunction following cast formation.

Liver-type Fatty Acid Binding Protein (L-FABP) is a 15 KDa peptide belonging to free fatty acid family able to bind hydrophobic molecules including bilirubin. During liver failure, the increase of L-FABP plasma levels enhances bilirubin uptake and consequent apoptosis of tubular cells through a mechanisms dependent on megalin, the endocytic receptor located on the luminal surface of tubular cells.

Aim of the study

To investigate the protective role of Coupled Plasma Filtration Adsorption (CPFA) on bile cast nephropathy through L-FABP and bilirubin adsorption by the hydrophobic polystyrene resin.

Methods

We reported the case of a kidney transplanted patient who developed sepsis, AKI and liver dysfunction treated by CPFA (Fig. 1). We evaluated plasma levels of bilirubin and L-FABP. Renal biopsies, urine sediment, NGAL and immunoelectrophoresis were also performed at different time points.

In vitro, we tested:
1. static adsorption of L-FABP to the polystyrene resin; 2. Cytotoxic (XTT assay) and pro-apoptotic effect (TUNEL assay) of patient’s plasma drawn before and after CPFA on cultured human tubular cells. The role of L-FABP was confirmed in tubular cells engineered to knock-down megalin, the L-FABP receptor, by small interfering RNA (siRNA).

Results

A 50-year-old man was subjected to kidney transplantation with slow recovery of graft function (Fig. 2). Kidney biopsy revealed acute tubulo-interstitial and vascular rejection treated by Thymoglobulin. He then developed septic shock for Legionella with multiple organ failure (serum creatinine 5.2 mg/dl and oliguria requiring RRT; bilirubin 42 mg/dl with liver biopsy showing marked cholestasis; plasma L-FABP 52 ng/ml). Urine analysis showed the presence of tubular cells, intense positivity for bilirubin and presence of low molecular weight proteins such as alpha-1 microglobulin and retinol binding protein: urine NGAL level was 356 ng/ml. A new kidney biopsy showing bile cast nephropathy and severe tubular injury was performed. After CPFA was started, we observed an increase of urine output and a concomitant decrease of bilirubin (Fig. 3), plasma L-FABP (Fig. 4) and urine NGAL (Fig. 5) and low molecular weight proteins (Fig. 6). *In vitro*, the polystyrene resin efficiently adsorbed L-FABP (100% adsorption after 15 minutes, 75% after 10 hours) (Fig. 7). After CPFA treatment, the cytotoxic (XTT assay in Fig. 8) and pro-apoptotic (TUNEL assay in Fig. 9) effect of patient’s plasma on cultured human tubular epithelial cells were all significantly reduced. In addition, plasma-induced apoptosis was dependent on the presence of megalin, the L-FABP receptor located on tubular cell surface (Fig. 10).

Conclusions

CPFA may have a protective role in AKI associated with liver failure through the direct adsorption of bilirubin and L-FABP to the synthetic polystrene resin. The decrease of bilirubin and L-FABP plasma levels may limit cast formation and tubular apoptosis (Fig. 11).